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Spiral self-avoiding walks on the triangular lattice 
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t School of Mathematics,  University of New South Wales, Kensington, NSW, 2033 Australia 
$ Department of Mathematics,  Unjversity of Melbourne,  Parkville, Victoria, 3052 Australia 

Received 26 March 1986, in linal form 23 May 1986 

Abstract. We study the behaviour of spiral self-avoiding walks on  the triangular lattice. 
The spiral constraint simply says that no step in an  anticlockwise direction may be taken. 
Imposing the additional constraint that steps may not deviate from the straight ahead 
direction by + ~ / 3  defines model I ,  previously solved by Joyce a n d  Brak as  well as  by Lin. 
I f  deviations of +2n/3 are forbidden, we refer to this as  model 11, while model I I I  allows 
deviations of both +r/3 and +2a/3. We find for both model II and  model I11 that the 
number of n-step self-avoiding spirals is 

s, - c exp(2z-J;;) 1 o g ( n / 1 2 ) / n ” ’ ~  

where c=+’/768yS,  +(model  11)-0.009, d (mode l  III)=O.16 a n d  y = 1 - 1 2 ( l o g 2 / n ) ’ .  
The confluent logarithm is an  additional feature not present in the simpler case of the 
square lattice and  model I triangular spiral self-avoiding walks. 

We make use of two new results in the theory of partitions. 

1. Introduction 

Since the introduction of spiral self-avoiding walks (SSAW)  on the square lattice by 
Privman (1983) there has been considerable interest in generalisations of the model 
to other lattices and other dimensions. The two principal quantities of interest are the 
number of n-step walks s,, and the mean end-to-end distance (I?”). 

For the square lattice SSAW, the quantity s, was determined to leading order by 
Guttmann and Wormald (1984) and Blote and Hilhorst (1984). Guttmann and Hirsch- 
horn (1984) gave the next-to-leading term for s,, while the complete asymptotic 
expansion was given by Joyce (1984). Blote and Hilhorst also showed that (I?,)- 
(3r1)”~(log n)/2.n for square lattice SSAW. 

For the triangular lattice, there are three distinct generalisations of the square lattice 
problem, which we refer to as models I ,  I1 and 111. These are illustrated in figure l ( a ) .  
In model I the spiral constraint permits a step straight ahead or with an acute included 
angle of ~ / 3 .  Model I 1  permits a step straight ahead or with an obtuse included angle 
of Z.n/3, while model I11 permits a step straight ahead or through + 7 / 3  or through 
+2.n/3. Additional to this constraint is of course the global self-avoiding constraint. 

Compared to models I1 and 111, model I is relatively straightforward, being 
expressable, and indeed solvable, in much the same manner as the square lattice S S A W .  

Indeed, Joyce and Brak (1985) obtained the complete asymptotic expansion for s,, for 
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M o d e l  1 M o d e l  I1 M o d e l  I11 

lb l  

M o d e l  I1 M o d e l  111 

Figure 1. ( a )  The three possible triangular lattice models. ( b )  The labelling scheme for 
typical model I 1  and model 111 spirals. 

model I, while Lin (1985) independently obtained the leading term for s,. Subsequently 
Lin and Liu (1986) provided an alternative, and somewhat simpler, derivation of Joyce 
and Brak’s result and in another paper Liu and Lin (1985) obtained the mean square 
end-to-end distance for model I, which was found to be ( R J -  (6n)”’(log n)/2m 

In this paper we have studied models I1 and 111, which require substantially different 
techniques for their solution. For all models considered, the method of analysis consists 
primarily of solving the problem of a single spiral, the number of which we denote 
s:, and then concatenating two such spirals in order to obtain s,. For the square 
lattice and model I on the triangular lattice the problem of single spirals can be simply 
related to the number of partitions of the integers, suitably restricted. No such 
identification is possible for models I1 and I l l  as we shall show. Indeed, our analysis 
gives s, only up to a multiplicative constant, which we estimate numerically. 

Two aspects of our results deserve comment. Firstly, model 111 presents little 
additional difficulty over model 11, while model 11, despite a superficial similarity to 
model I is a totally different, and much more difficult, problem. Secondly, our earlier 
attempts at solving these problems were guided by series expansions. That is, we 
obtained 30-50 terms of various series for sx and s, and analysed these assuming a 
similar functional form to that obtained for the square and model I SSAW. Our series 
results turned out to be positively misleading, and provide a salutory lesson-if one 
were needed-of the difficulties of predicting unknown behaviour from series 
expansions. Finally we note a generalisation to three dimensions which has been 
introduced by Guttmann and Wallace (1985). They consider SSAW on the simple cubic 
lattice, and while mindful of the misleading series results for model I1 and 111, tentatively 
conclude that s, - p “n y- ’  and ( R i )  - An2’ with p = 2.6560, y = 1.24 and v i= 0.655. 
That is, similar behaviour to that found for ordinary three-dimensional SAW albeit with 
different critical exponents. 
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For all the two-dimensional problems mentioned, the spiral constraint completely 
changes the form of s, from that of ordinary SAW, while it appears that the (less 
restrictive) three-dimensional spiral constraint does not cause such gross changes in 
functional form. 

In the next section we derive the result for models I 1  and 111 single spirals. In 5 3 
we discuss the concatenation of single spirals to generate full spirals and 0 4 comprises 
a discussion and conclusion. 

2. Determination of s x  

In figure l ( b )  we show the labelling scheme used for model I1 and model 111 single 
spirals. Labelling the first segment u l ,  successive segments in model I1 are labelled 
U*, uj,  u4, . . . , as shown. For model 111, since segments corresponding to turns through 
an  included angle of ~ r / 3  may be missing, so too may some of the U,. Thus the model 
111 spiral shown in figure l ( b )  has no segments corresponding to u2 and u6. The spirals 
shown in figure l ( b )  correspond to the labellings 

U1 = U* = uj = U4 = 1 

and 

ug = 2 u6= 1 U, = ug = U9 = 2 (model 11) 

U1 = 1 uj  = 2 u4= 1 U5 = 3 u , = 4  ug= 1 

U9 = 3 (model 111). 

We denote the number of steps by n, and n = Z,k=, ui, where the last non-empty segment 
is labelled U k .  

For convenience we set u,=O and note that for model I1 we have 

ui > 0 i = l , k  (2.1) 

while for model 111 we have the slightly more cumbersome constraint 

(2.2) 

Now the key equation that defines a single spiral is 

u , - l +  U, < U,+*+ 4 + 3  l c i ~ k - 3 .  (2.3) 

While this is not immediately obvious, a few examples quickly serve to demonstrate 
the correctness of the result. To proceed further, we write 

t ,  = U ,  + q - 1  i =  1 , 2 , .  . . , k (2.4) 

so that 

U, = t ,  - 1 , -  I + t , - 2  - f , - 3  . . . + ( -  l ) ' + ]  t ,  i = 1 , 2  , . . . ,  k. ( 2 . 5 )  
Conditions (2.1) and (2 .3)  become 

0 < t ,  < t i + ,  I c i s k - 3  

and 
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Condition (2.2) for model I11 walks translates to (2.7) with the > sign replaced by 2 
for l < i S k - - l .  

The problem now is to count the number of distinct decompositions of n such that 

(2.8) 

with t, satisfying (2.6) and (2.7). To satisfy (2.6), it is convenient to define 

d ,  = t ,  - t l - 3  i = l , k  (2.9) 

so that 

t ,  = c d, - , ,  i = l , k  (2.10) 
,”U 

and 

(2.11) 

while condition (2.7) becomes 

U, = ( d ,  - d , - l +  d,-2) + (dc-6- d , - , +  d,-s) 

+ (d , - lz  - d,-,, + d,-14) +. . . > 0 1 < i c k .  (2.12) 

We will initially focus on the sum (2.11) while ignoring the constraint (2.12) and will 
subsequently correct for the effect of (2.12). We shall need two results from the theory 
of partitions which have an independent interest of their own. 

Theorem 1. Let q , ( m )  denote the number of partitions of m into r unequal positive 
integer parts. Then for A = r - (2/ T)& log 2 = O w 3 )  we have asymptotically for 
large m 

1 
q r ( m )  = 4m(6y)1/2 exp[?r(m/3)”’] e ~ p [ - ? r A ~ / 2 y ( 3 m ) ’ / ~ ]  (2.13) 

where y = 1 - 12(log 2/?r)’ = 0.415 8391 . . . . 

Theorem 2. Let Q k ( n )  denote the number of these partitions of n into unequal parts 
in which k is the largest summand. Then for large n 

A 
O d n )  = Q ( n ) ~ e ~ p [ - 2 ( 3 A ) ” ~ / n I  (2.14) 

where 

1 
= 4 x  3,,4n3,4 exP[~(n /3)”‘ ]  (2.15) 

is the total number of partitions of n into unequal parts and A is determined from 

(2.16) 
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Corollary. For almost all partitions of n into unequal parts the largest summand is 

(2.17) 

where W( n )  diverges arbitrarily slowly. 

Theorem 1 can be deduced from results of Szekeres (1951). The sharp maximum of 
q , ( m )  for fixed m occurs when the number of summands is in the neighbourhood of 
2 log 2(3m)’”/.rr (see Szekeres (1951), theorem 3) and the formula itself is obtained 
from that paper by fairly straightforward calculation. As a check it is worth noticing 
that 

oc 1 
exp[ n( m/3)’/*] 1 exp[ - T A  */2y(3 m dA 

r 4m(6y)’/2 --oc 
c 4 A m )  = 

(2.18) 

as required. 
A related result to theorem 2 was proved by Erdos and Lehner (1941), who proved 

that for almost all partitions of n into unequal parts the number of summands less 
than cdn  ( c  > 0) is 

2(3n)”’ 
log {2/[ 1 + exp( - c r / J 3 ) ] } (  1 + o( I ) ) .  

7T 
(2.19) 

Unfortunately this result is not strong enough to deduce theorem 2 and neither are 
the numerous results of Erdos and Szalay (1981) or Szalay and Tur6n (1977a, b). 
However, using the generating function 

one can deduce (2.14) by the same methods used to derive the results in Szekeres 
(1951). Details will be published elsewhere (Szekeres 1987). 

Returning to our calculation, we re-arrange the terms in the sum (2.11) to give 
5 

n = C  n, (2.21) 
,=O 

where 

(2.22) 

n , = d k - , + 2 d k - 1 3 + 3 d k - 1 9 + 4 d k - 2 5 + .  . . 
n 2 = d k  - 2 + 2 d k  - 8 -k 3 d k  - 14 + 4 dk - 20 + . . 
n3= . . (2.23) 
n4 = dk -4 + 2dk - 10 + 3 dk - 16 + 4dk - 22 + . . . 
n5 = dk - 5  + 2dk - I I -k 3 dk - 17 4dk - 2 3  -k . . . . 

Note that each n,  is of the form m, +2m2+3m,+ .  . . . Denote by q , ( m )  the number 
of decompositions of m in the form m =X:= l  i m ,  mi>O. This is of course equal to 
the number of partitions of m into r distinct summands, as can readily be seen from 
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a Ferrers graph of a partition. Then, temporarily disregarding condition (2.12) and the 
fact that d k - ,  does not appear in (2.21)-(2.23), we can write the number of decomposi- 
tions of n satisfying (2.13) as s*:, where the circumflex reminds us of the conditions 
that have been disregarded: 

(2.24) 

where 

and 

Asymptotically, as n and r get large, we have q,(n)  - q,+l(n) -max, qr(n)  so with 
r = [k/6], (2.24) simplifies to 

5 

s*:= c c n qr(nr). 
&PI  n = x n ,  i = O  

Now using (2.13) we can write 

s*x= [4(6y)’’2]-6 n n ; ’ e x p [ ( ~ / J 3 )  
5 

r a l  n=Tn,  i = O  

(2.25) 

(2.26) 

where A8=r-2(3n,)’’*log2/.rr. The terms in this formidable sum have a sharp 
maximum when no = n ,  = n, = n3 = n4 = n5 = n/6, and in that neighbourhood we can 
set Al/Jnl  = J6A/Jn ,  and the sum over r is performed by integrating over A, so that 

To perform this final sum we set n, = n/6+J; so that 

and replacing the sum by a five-dimensional integral WRT f o ,  f , ,  fi, f 3 ,  f4 we obtain 

exp( ~ J 2 n )  
64d3 y5I2n2‘ 

s*: - (2.29) 

To pass from here to s: we consider the effect of the two constraints we have neglected. 
Firstly, the fact that dk-, does not appear in (2.23) means that the only constraint on 

comes from (2.12). This gives two distinct restrictions: 
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From (2.23) we see that (dk + d k - 6 + .  . . + dk-6n + . . .) is the maximum summand in the 
unequal partition of no- n/6. (A Ferrers graph makes this obvious.) From theorem 
2 it follows immediately that (2.31) is irrelevant and can be replaced by dk- ,  > 0 for 
almost all partitions. On the other hand (2.30) tells us that for almost all partitions 
dk-1  is only constrained by the requirement that it be less than the maximum summand 
in unequal partitions of no, i.e. 

d k - 1  J3 (;) log (;) + O(Jn  W (  n ) )  
5r 

(2.32) 

by the corollary of theorem 2.  Hence the number of free choices for d k - ,  is (for large 
n and for almost all spirals) J n  l o g ( n / 6 ) / ( d 2 ) .  Thus ;$ given by (2.29) must be 
multiplied by this expression to account for the freedom of d k -  ,. 

The final factor that must be introduced is the effect of constraint (2.12) for i # k - 1 .  
To account for this constraint we first observe that 

4 , - l ( m - m , r ) = 4 , ( m ) / 2 " i .  (2.33) 

The left-hand side of (2.33) is the number of decompositions of large m into r distinct 
summands with m, fixed, where m = m, + 2m,-, + , . , + rm,. So from (2.33) we see that 
about 2-' of all such decompositions have m ,  = j .  This follows from the asymptotic 
form for q , ( m )  given by theorem 1 .  Similarly, for m1 and m, small compared to (large) 
m, about 2-ml-m2 decompositions have these given values of m1 and m2. This result 
obviously generalises and we see that the effect of the constraint (2.12) on (2.29) is to 
introduce a factor 

(2.34) 

which is summed over all d, > 0 satisfying (2.12). We have been unable to determine 
4 analytically, but by ordering the individual constraints (2.12) we have estimated 4 
numerically. That is, we consider the sequence of inequalities 

4 = C 2-\d1+d2+ +dr)  

d2 > d ,  m = 2  

d3 > dz - d ,  m = 3  

d , > d , - d ,  m = 4  

dg>d4-d3 m = 5  

d6 > d5 - d ,  m = 6  

d , > d 6 - d 5 + d l  m = 7  

(for model 111 the > sign is replaced by 5). Introduction of successive inequalities 
(2.35), labelled by m, gives a monotonic decreasing sequence of estimates for 4. These 
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Table 1. Estimates of 4 (2.34) for model I I  and model 111 

m Model I 1  Model 111 

3 
4 
5 
6 
7 
8 

10 
12 
cc 

0.111 1111 
0.079 3651 
0.068 7831 
0.053 1619 
0.047 1679 
0.042 6197 
0.035 721 
0.031 248 

-0.009 

0.555 556 
0.492 063 
0.433 862 
0.381 204 
0.361 604 
0.330 92 
0.297 13 
0.270 24 

=0.16 

are shown in table 1. Extrapolation of these against 1/ m is quite linear and allows us 
to estimate 411=0.009 (model 11) and ~ l I r = 0 . 1 6  (model 111). 

Thus for model I 1  we obtain 

(2.35) 

while for model 111 only the constant changes to 0.0030. In the next section we show 
how single spirals can be concatenated to give full spirals. 

3. Full spirals s, 

We consider the concatenation of two spirals to produce ‘full’ spirals. The concatena- 
tion of two single spirals for model I1 is as shown in figure 2, in which a spiral S ( m )  
is concatenated with a spiral S ’ ( m ’ ) ,  the two spirals being of length m and m’ steps 
respectively. As is true for the square lattice and model I triangular lattice full spirals, 
a necessary and sufficient condition for the existence of a full spiral is a cutting line, 
parallel to one of the lattice axes which cuts only one bond of the full spiral, no matter 
how far the cutting line is extended (see figure,2). For certain full spirals two cutting 
lines exist. In our formulation below these will be doubly counted, but as the number 
of such spirals is asymptotically negligible (proved explicitly by Guttmann and Wor- 
mald (1984) for the square lattice case), our result for s, will be correct to leading order. 

Figure 2. The concatenation of two single (model 11) spirals S ( m )  and S ’ ( m ’ )  to form a 
full  spiral. 
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Referring again to figure 2 ,  we concatenate s( m) with s’( m’) by means of w = u k + l =  

U;+> and w ’ =  U; + I  = uk +* where the labellings are explicitly shown in figure 2 .  The 
following conditions must be satisfied: 

U!, > uk->+ u k - 3  (3.1) 

(3.2) 

(3.3) 

w‘+ U ;  > U ;  - ? + U ;  - 3  

b%’+ b%”> uk-1 + uh-?+ U ;  - 1  + U ;  -2‘  

If, in addition, 

w’+ U ;  > U ;  - > + U ;  - 7 - k  u h  + Uk-1 (3.4) 

then there exists a second cutting line and double counting occurs, as discussed above. 
The above formulation applies to both models I1 and 111, the only distinction 

coming from (2.1) and ( 2 . 2 ) ,  as with single spirals. 
Referring now to ( 2 . 2 2 ) ,  we denote by a, ( i  = 0,1, .  . . , 5 )  the maximum summand 

in n,, so that, for example, 

~,=d,+dk-6+dr - lz+dh 1 8 + .  . . . (3.5) 

Similarly 

d,-l + uI = d t - ,  + d , - ,  + d,- 1 3  + . . . (3.6) 

and so from (2.12), successively setting I = k, k - 1 ,  k-2 ,  k - 3  we obtain 

Uk = U,+ U 2  - U1 - d k - 1  

(3.7) 

u h - 3  = ff3 - (Tq + u5. 
Now in the concatenation of S ( m )  and S’(m‘)  we have 

n = m +  m’+ w+ w‘. (3.8) 

Equations (3.1)-(3.3) and  (3.8) become 

w = rS + uI - uo + d + r ( r >  0) 

w ’ =  a;+ ai + a;)+ d ’ +  r’ ( r ’ > O )  

(3.9) 

(3.10) 

n = m + m’+ U,+ U’,+ u5+ uk- u,,-u;,+d + d ’ +  r +  r’ 

w + w’= ui +u,+uj + U;+ t 

(3.11) 

(3.12) 

where for notational simplicity we have set d = d k - l  and d ’ =  d ;  - I .  From (3.9)-(3.12) 

(3.13) 

(3.14) 

The problem of determining s, now reduces to the problem of estimating the number 
of choices of d, d ‘ ,  r and r’ for a given S ( m )  and S ’ ( m ’ ) ,  which has then to be summed 
over all t > 0 and all choices of summands a,. 

( f  > d + d ’ )  

r + r‘ = a,+ u4 - u5 + U;+ U& - U ;  + f - d - d ’  

m + m’ = n - (a ,  +a,+ (TI +(+I) - t .  
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To leading order we can assume that each ui can be replaced by its most likely 
value, so that 

( i  = 0,1, . . . , 5 )  
J n  n 

U , - - U = -  log - 
2 T  12 

for almost all partitions, and (3.13) becomes 

r +  r ’ =  2u+ t - d - d ’  

so the number of possible choices for r, r ’ ,  d and d ‘  is 

1 ( 2 ~ +  t - d ’ - d )  = f t ( t  - 1 ) ( 2 ~ +  l ) - (+t2 

(3.15) 

(3.16) 

(3.17) 

where the summation is over d + d ‘ <  t. 

summands ui ( i  = 0 , .  . . , 5 )  is given by (2.29), (2.34) and theorem 2 as 
For fixed d,  the total number of simple spirals of length m and given maximal 

where 

log pj =f log(m/6) -  T U , / ( ~ V I ) ” ~ .  

Thus we obtain 

(3.18) 

(3.19) 

(3.20) 

To satisfy (3.14) we write 

m = n / 2 - u1 - u., + U m‘ = n/2 - U ;  - U: - U - t (3.21) 

where, as we subsequently see, U = O(n7l8). Substituting (3.21) into (3.20), we obtain 

(3.22) 

where the last integral arises from the fact that each of U ’ ,  u4, U \  and U &  in (3.21) 
gives an identical integral and that du, = -(2m)’/’ dpj / (vp,) ,  so that the contribution 
from the integral over the remaining terms in the product in (3.20) is just unity. The 
first two integrals are trivial. The last requires the identity -TuI/Jn = 
logp , - t log(n / l2)  from (2.16) and gives ( ~ / d n ) ~ .  Hence we finally obtain 

(3.23) 

where 4 ~ 0 . 0 0 9  for model I1 and 4 ~ 0 . 1 6  for model 111. 
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Table 2. Summary of known results for spiral self-avoiding walks. 

Square 

Tn-5/4 exp[n(2n/ 3)1/21 
Triangular model I 2- l /437/4  - .  

Triangular model I 1  + 2 n - 1 3 / 4  exp(2sn’”) log( +) ? 
768y5 

4 = 0.009, y = 1 - 12(log 2/ T r y  

42 n-” l4  exp( 2 an 
Triangular model 111 log(n/ l2)  768y5 

? 

4-0.16, y = l - l 2 ( l o g 2 / ~ ) ~  
Simple cubic pnnr- l  with I* = 2.6560 ( R : )  - n2’ 

y = 1.24 U i= 0.655 

4. Discussion and conclusion 

We summarise the known exact and numerical results for spiral self-avoiding walks 
in table 2. The interesting feature that appears in the solution to models I1 and I11 is 
the presence of a confluent logarithmic term. It is the presence of this term, augmented 
by the slowly converging amplitude term 4, defined by (2.34), that makes conventional 
series analysis so unreliable in this case. 

We give in table 3 enumerations of both single spirals and full spirals for both 
models. Analysis of these series is rather misleading, in that while the primary 
exponential growth term e x p ( 2 d n )  is readily confirmed, an incorrect exponent of 
the correction term is suggested. For s,, a preliminary analysis suggested n-17’4, while 
the exact result is n-13’4 log( n). This discrepancy is clearly due to the fact that we are 
far removed from asymptotia. 

Given both the exponential growth term and the correction terms n-13,/4 log(n/l2),  
the amplitude obtained from our enumerations is moving towards the predicted value, 
but is still, at n =40, a factor of 5 too large in the case of model 11, though only 20% 
too large in the case of model 111. 

We have not attempted to calculate ( R , )  for this model, but presumably this should 
be possible by the same techniques used in calculating s,. 

In conclusion we have obtained a new exact solution for a restricted self-avoiding 
walk problem. The model is of limited physical interest, but is a fascinating addition 
to the small class of exactly solvable models, and prompted the proof of two new 
theorems in the theory of partitions. 
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Table 3. 

n Model 11 Model I 1 1  Model I 1  Model 1 1 1  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

References 

1 
2 
4 
8 

16 
31 
61 

115 
213 
388 
69 1 

1218 
2 110 
3 617 
6 113 

10 238 
16 945 
27 802 
45 180 
72 838 

116479 
184 936 
291 556 
456 694 
710907 

1 100 192 
1 693 123 
2 591 830 
3 947 417 
5 982 953 
9 026 001 

13 556 212 
20 273 031 
30 193 155 
44 789 076 
66 186 878 
97 446 176 

142 956 659 
208 997 567 
304 524 831 
442 276 098 
640 317 828 

1 
3 
8 

20 
41 

I06 
230 
479 
973 

1924 
3 712 
7 021 

13 034 
23 780 
42 732 
75 703 

132 360 
228 664 
390 61 1 
660 296 

1 105 321 
1 833 358 
3 014 694 
4 917 036 
7 958 127 

12 786 252 
20 401 469 
32 337 878 
50 936 233 
79 750 436 

124 149 022 
192 204 697 
296 001 288 
453 548 269 
691 574 373 

1049 590 078 
1585770518 
2384 452 588 
3573359776 
5331 138 923 

1 
2 
4 
8 

14 
26 
43 
74 

120 
197 
311 
495 
768 

1189 
1811 
2 748 
4 116 
6 136 
9 058 

13 299 
19 370 
28 069 
40 399 
57 856 
82 374 

116 736 
164 574 
231 007 
322 749 
449 089 
622 263 
858 935 

1181 048 
1618 209 
2209 299 

1 
3 
7 

15 
31 
59 

1 I O  
198 
347 
592 
997 

1641 
2 666 
4 266 
6 741 

10 525 
16 268 
24 882 
37 717 
56 683 
84 504 

I25 031 
183 716 
268 125 
388 873 
560 647 
803 723 

1146013 
1 625 731 
2 294 964 
3 224 587 
4 510 551 
6 282 294 
8 714 034 

12 039 318 
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